Online Encyclopedia
Slide rule
The slide rule is a portable, mechanical, analog computer usually consisting of three interlocking calibrated strips and a sliding cursor used to record intermediate results. It was once widely used for rapid, approximate scientific and engineering calculations. It was invented in 1622 by William Oughtred and was very commonly used until the 1970s when it was made obsolete for most purposes by electronic scientific/engineering calculators.
Contents 
Basic concepts
Most slide rules consist of three linear strips of the same length, aligned in parallel and interlocked so that the central strip can be moved lengthways relative to the other two. The outer two strips are fixed so that their relative positions do not change. Some slide rules have scales on both sides of the rule and slide strip, others on one side of the outer stips and both sides of the slide strip, still others on one side only. A sliding cursor with one or more vertical alignment lines can record an intermediate result on any of the scales.
In general, mathematical calculations are performed by aligning marks on the sliding central strip with marks on either of the fixed strips and then observing the relative positions of other marks on the strips. The marks engraved or printed on the strips are carefully placed to allow the handler to perform a number of important mathematical operations. The geometry of the markings determines which operations may be performed.
Theory of operation
The rule has logarithmic scales. That is, a number x is printed on each rule at a distance proportional to logx from the "index", which is marked with the number 1. A logarithm transforms an operation of multiplication or division to one of addition or subtraction thanks to the rules log(ab) = log(a) + log(b) and log(a / b) = log(a)  log(b).
Since addition and subtraction are easily carried out using a number line, the slide rule effectively implements a number line with a sliding scale. By the use of the logarithmic transforms, the operations of multiplication and division can be carried out.
To multiply x by y, one aligns the index (the number 1) on the sliding scale with the number x on the fixed scale, whereupon the number y on the sliding scale becomes aligned with the number xy on the fixed scale.
The illustration below shows the multiplication of 2 with any other number. The index (1) on the upper scale is aligned with the 2 on the lower scale. The numbers on the upper scale (multipliers) correspond with the multiplication on the lower scale. Example: the 3.5 on the upper scale is aligned with the product 7 on the lower scale, the 4 with the 8 etc.
Where operations go "off the scale" e.g. the user has to slide the upper scale to the left and use the index 10 or 100 instead of 1, and remember to adjust the result by this factor.
Division reverses this process. The illustration below shows all divisions by 2.75 as the index (1) on the upper scale is aligned with the 2.75 on the lower scale. Example: the 22 on the lower scale (the mark just to the left of the 22.5 mark) is aligned with the quotient (22/2.75=) 8 on the upper scale, the 55 is aligned with 20 etc.
Physical design
Standard linear rules
Slide rules calibrated on one side are called "simplex". Slide rules calibrated on both sides are called "duplex".
Typically two significant figures of precision are possible, three being obtainable by expert users who can estimate the fraction between gradations. Some highend slide rules have magnifying cursors that effectively double the accuracy, permitting a 10inch slide rule to serve as well as a 20inch.
Slide rules often have other mathematical functions encoded on other auxiliary scales. When they were in widespread use, the most popular were trigonometric, usually sine and tangent, logarithm of logarithm (base 10) (for taking the log of a value on a multiplier scale), natural logarithm and exponential scales. Some rules included a Pythagorean scale, to figure sides of triangles, and a scale to figure circles. Others featured scales for calculating hyperbolic functions.
Specialised slide rules were invented for various forms of engineering, business and banking. These often had common calculations directly expressed as special scales, for example loan calculations, optimal purchase quantities, or particular engineering equations.
A number of tricks were used to get more convenience. Trigonometric scales were sometimes duallabelled, in black and red, with complementary angles, the socalled "Darmstadt" style. Duplex slide rules often duplicated basic scales on the back. Scales were often "split" to get higher accuracy.
Circular slide rules
Circular slide rules came in two basic types, one with two cursors, and another with a moveable disk and a cursor. The basic advantage of a circular slide rule is that the longest dimension was reduced by a factor of about 3 (i.e. by π). For example, a 10 cm circular would have a maximum precision equal to a 30 cm ordinary slide rule. Circular slide rules also eliminate "offscale" calculations, because the scales were designed to "wrap around".
Circular slide rules were mechanically more rugged, smoothermoving and more precise than linear slide rules, because they depended on a single central bearing. The central pivot did not usually fall apart. The pivot also prevented scratching of the face and cursors. Only the most expensive linear slide rules had these features.
The highest accuracy scales were placed on the outer rings. Rather than "split" scales, highend circular rules used spiral scales for difficult things like logoflog scales. One eightinch premium circular rule had a 50 inch spiral loglog scale!
In 1952, Swiss watch company Breitling introduced a pilot's wristwatch with an integrated circular slide rule specialized for flight calculations: the Breitling Navitimer. The Navitimer circular rule, referred to by Breitling as a "navigation computer", featured airspeed, rate /time of climb/descent, flight time, distance, and fuel consumption functions, as well as kilometer–nautical mile and gallon–liter fuel amount conversion functions.
One slide rule remaining in daily use around the world is the E6B. This is a circular slide rule first created in the 1930s for aircraft pilots to help with dead reckoning. It is still available in all flight shops, and remains widely used. While GPS has reduced the use of dead reckoning for aerial navigation, the E6B remains widely used as a primary or backup device and the majority of flight schools demand its mastery to some degree.
One significant advantage of a circular slide rule is that it never has to be reoriented when results are near 1.0  the rule is always on scale.
Technically, a real disadvantage of circular slide rules is that lessimportant scales are closer to the center, and have lower precisions. Historically, the main disadvantage of circular slide rules was just that they were not standard. Most students learned slide rule use on the linear slide rules, and never found reasons to switch.
Materials
The best older slide rules were made of bamboo, which is dimensionally stable, strong and naturally selflubricating. They used scales of celluloid or plastic. Some were made of mahogany. Later slide rules were made of plastic, or aluminium painted with plastic.
All premium slide rules had numbers and scales engraved, and then filled with paint or other resin. Painted or imprinted slide rules are inferior because the markings wear off.
Early cursors were metal frames holding glass. Later cursors were acrylics or polycarbonates sliding on teflon bearings.
Magnifying cursors can help engineers with poor eyesight, and can also double the accuracy of a slide rule.
Premium slide rules included clever catches so the rule would not fall apart by accident, and bumpers so that tossing the rule on the table would not scratch the scales or cursor.
The recommended cleaning method for engraved markings is to scrub lightly with steelwool. For painted slide rules, and the faint of heart, use diluted commercial windowcleaning fluid and a soft cloth.
History
Slide rules came into wide use in the 1850s, as engineering became a recognized professional activity. In World War II, bombardiers and navigators who required quick calculations often used specialized slide rules. One office of the U.S. Navy actually designed a generic slide rule "chassis" with an aluminium body and plastic cursor into which celluloid cards (printed on both sides) could be placed for special calculations. The process was invented to calculate range, fueluse and altitude for aircraft, and then adapted to many other purposes.
Throughout the 1950s and 1960s the slide rule was the symbol of the engineer's profession (in the same way that the stethoscope symbolized the medical profession). As an anecdote it can be mentioned that German rocket scientist Wernher von Braun brought two 1930s vintage Nestler slide rules with him when he moved to the U.S. after WWII to work on the American space program. Throughout his life he never used any other pocket calculating devices; slide rules obviously served him perfectly well for making quick estimates of rocket design parameters and other figures.
Some engineering students and engineers actually carried fiveinch pocket slide rules in belt holsters, in addition to using a ten or twentyinch rule for precision work at home or at the office. All this came to an end in the 1970s, when the advent of miniaturised calculators made slide rules obsolete. The last nail in the coffin was the launch of scientific pocket calculators; i.e. models featuring trigonometric and logarithmic functions, of which the HewlettPackard HP35 was the first, in 1972.
Most slide rules are now collectors' items. A very popular model is the Keuffel & Esser DeciLon, a premium scientific and engineering slide rule available both in a teninch "regular" (DeciLon 10) and a fiveinch "pocket" (DeciLon 5) variant. Another prized American model is the eightinch Scientific Instruments circular rule. Of European rules, FaberCastell 's highend models are the most popular among collectors. As recently as 2002, brand new slide rules were being located in the backshelves of university bookstores, even though production ended almost 30 years earlier, in 1973.
Advantages
A slide rule tends to moderate the fallacy of "false precision" and significance. The typical precision available to a user of a slide rule is about three places of accuracy. This is in good correspondence with most data available for input to engineering formulas (such as the strength of materials, accurate to two or three places of precision, with a great amount—typically 1.5 or greater—of safety factor as an additional multiplier for error, variations in construction skill, and variability of materials). When a modern pocket calculator is used, the precision may be displayed to seven to ten places of accuracy while in reality, the results can never be of greater precision than the input data available.
A slide rule requires a continual estimation of the order of magnitude of the results. On a slide rule 1.5 × 30 (which equals 45) will show the same result as 1,500,000 × 0.03 (which equals 45,000). It is up to the engineer to continually determine the "reasonableness" of the results: something easily lost when a computer program or a calculator is used and numbers might be keyed in by a clerk not qualified to judge how reasonable those numbers might be.
See also
 Abacus
 Common logarithm
 Timeline of computing
 Counting rods
 Mathematical tables
 Napier's bones
 Nomogram
External links
 Sliderule information at the Museum of HP Calculators http://www.hpmuseum.org/sliderul.htm
 Make your own slide rule http://www.ee.ryerson.ca/~elf/ancientcomp/sliderule.pdf (PDF)
 ASA Micro E6B Flight Computer http://www.acespilotshop.com/pilotsupplies/flightcomputers/micro_e6b.htm – A specialized circular slide rule
 ASA E6B Metal Flight Computer http://flightgadgets.com/ase6bmetflig.html – Metal model of the E6B
 Make your own circular slide rule http://icarus.physics.montana.edu/math/csr.html

The Slide Rule Universe http://www.sphere.bc.ca/test/sruniverse.html – A comprehensive slide rule reference and buying/selling site
 How a slide rule works http://www.sphere.bc.ca/test/howto.html
 Pickett Slide Rules http://www.sphere.bc.ca/test/pickett.html
 Breitling Navitimer info webpage http://www.breitling.com/en/models/navitimer/navitimer/ – Wristwatch with circular rule
 Sag Milling's Online Sliderule http://www.sagmilling.com/tools/sliderule/ fully functional online version of a slide ruler.