Search

The Online Encyclopedia and Dictionary

 
     
 

Encyclopedia

Dictionary

Quotes

 

Eldfell

Eldfell is a cinder cone volcano just over 200 m high on the Icelandic island of Heimaey. Its name means Fire Mountain, and it formed in a volcanic eruption which began without warning just outside the town of Heimaey on 23 January 1973.

The eruption caused a major crisis for the island and nearly led to its permanent evacuation. Volcanic ash fell over most of the island, destroying many houses, and a lava flow threatened to close off the harbour, the island's main income source via its fishing fleet. An operation was mounted to cool the advancing lava flow by pumping sea water on it, and this was successful in preventing the loss of the harbour.

Following the end of the eruption, the islanders used the heat from the slowly cooling lava flows to provide hot water and generate electricity. They also used some of the extensive tephra (airborne volcanic material) fall to extend the runway at the island's small airport, and as landfill on which 200 new houses were built.

Contents

Background


Iceland is a region of frequent volcanic activity, due to its location astride the Mid-Atlantic Ridge, where the North American and Eurasian Plates are moving apart, and also over the Iceland hotspot , which greatly enhances the volcanic activity. It is estimated that a third of all the basaltic lava erupted in the world in recorded history has been produced by Icelandic eruptions.

The Vestmannaeyjar (Icelandic for Westman islands) archipelago lies off the south coast of Iceland, and consists of several small islands, all formed by eruptions in the Holocene epoch. Heimaey, the largest island in the group and the only inhabited one, also contains some material from the Pleistocene era. The most prominent feature on Heimaey before 1973 was Helgafell, a 200 m (650 ft) high volcanic cone formed in an eruption about 5,000 years ago.

The Vestmannaeyjar archipelago was settled in about 874 AD, originally by escaped Irish slaves belonging to Norse settlers on the mainland. These settlers gave the islands their name, Ireland being west of mainland Scandinavia. Although plagued by poor water supplies and piracy during much of its history, Heimaey became the most important centre of the Icelandic fishing industry, having one of the few good harbours on the southern side of the country, and being situated in very rich fishing grounds.

Since the settlement, no eruptions had been known to occur on the islands until 1963, when a new member of the archipelago, Surtsey, was formed by a four year eruption which began offshore about 20 km (12.5 miles) south-west of Heimaey. However, offshore eruptions may have taken place in 1637 and 1896. Scientists have speculated that volcanic activity in the archipelago may be increasing due to the southward propagation of the rift zone which crosses Iceland.

The eruption begins


At about 20:00 on 21 January 1973, a series of small tremors began to occur around Heimaey. They were too weak to be felt by the residents of the island, but a seismic station 60 km away recorded over 100 small tremors between 01:00 and 03:00 on 22 January. The tremors continued at a reduced rate until 11:00 on 22 January, after which they stopped until 23:00 that evening. From 23:00 until 01:34 on 23 January, seven tremors were detected, the largest of which measured 2.7 on the Richter scale.

Small tremors are very common at plate boundaries, and nothing here indicated that they heralded a major eruption. The onset of the eruption was therefore almost entirely unexpected. At about 01:55 on 23 January, a fissure opened up on the eastern side of the island, barely a kilometre away from the centre of the town of Heimaey.

The fissure rapidly extended to a length of 2 km (1.25 miles), crossing the island from one shore to the other. Submarine activity also occurred just offshore at the northern and southern ends of the fissure. Spectacular lava fountaining occurred along the whole fissure, which reached a maximum length of about 3 km (2 miles) during the first few hours of the eruption, but activity soon became concentrated on one vent, about 0.8 km (0.5 miles) north of the old volcanic cone of Helgafell and just outside the eastern edge of the town.

During the early days of the eruption, the rate of lava and tephra emission from the fissure was estimated to be 100 m³/s, and within two days, the lava fountains had built a cinder cone over 100 m high. The name initially given to the new volcano was Kirkjufell (Church Mountain), perhaps to echo the nearby Helgafell (Holy Mountain), but the cone was eventually named Eldfell (Fire Mountain) by the official Icelandic place naming committee.

Evacuation

In the early hours of the eruption, the Icelandic State Civil Defence Organisation evacuated the entire population of Heimaey, having previously developed evacuation plans for an emergency such as this. The evacuation was necessary because lava flows were already moving slowly into the eastern side of town, and the whole of the small island was threatened by the likelihood of heavy ash fall.

Because of severe storms in the days before the eruption, almost the entire fishing fleet was in the harbour, a stroke of luck which greatly assisted the organisation of the rapid evacuation. The population was alerted to the situation by fire engines sounding their sirens, and gathered by the harbour with just the small amount of possessions they were able to carry. The first boats left for Þorlákshöfn at about 02:30, just half an hour after the start of the eruption.

Most of the population left the island by boat. Fortunately, the lava flows and tephra fall did not at first affect the island's airstrip, and a few people who were unable to travel by boat were evacuated by air. Within six hours of the onset of the eruption, almost all of the 5,300 people of the island were safely on the mainland. A few people remained to carry out essential functions and to salvage belongings from threatened houses.

Destruction of houses, creation of land


Houses close to the rift were soon destroyed by lava flows and tephra fall. A few days after the eruption began, the prevailing wind direction moved to the west, resulting in extensive tephra falls over the rest of the island, causing extensive property damage. Many houses were destroyed by the weight of the ash fall, but crews of volunteers working to clear the ash from roofs and board up windows saved many more. By the end of January, tephra covered most of the island, reaching 5 m (16 ft) deep in places. Apart from falling ash, some houses were also burned down by fires caused by lava bombs , or overridden by advancing lava flows.

By early February, the heavy tephra fall had abated, but lava flows began to cause serious damage. Submarine activity just north of the fissure severed an electric power cable and a water pipeline which supplied electrical power and water from the Icelandic mainland, and lava began to flow into the harbour, as situation which caused serious concerns - if the harbour was destroyed, the island's fishing industry would be devastated. As Heimaey was responsible for some 25% of Iceland's total annual catch, the effect on the whole country's economy would be significant. Efforts to prevent the loss of the harbour are described further below.

Lava flows also moved into the sea east of the island, creating new land that would eventually add over 2 km² (0.8 square miles) to the island, and into the eastern parts of town, destroying several hundred houses. The flows were thick and blocky aa flows, and covered the ground to average depths of about 40 m (130 ft), reaching 100 m (330 ft) thick in places. Later on in the eruption, a surge of lava destroyed one fish processing plant and damaged two others, and also demolished the town's power generating plant.

Despite the eruption's close proximity to the town and the extensive property damage, only one fatality could be attributed to the eruption - a man who had broken into a chemist's store to acquire drugs was suffocated by toxic fumes. Poisonous gases, mostly carbon dioxide, became concentrated in many buildings partially buried by tephra, and several other people were affected when entering these buildings.

Efforts to mitigate the hazards presented by the accumulation of poisonous gas included the building of a large tephra wall to divert gases away from the town, and the digging of a trench to channel away the CO2. These defences were only partially effective, as they relied on the assumption that the gases were produced at the vent, and flowed into the town from there. It is believed that as least some of the CO2 originated deep within the volcanic conduit and percolated through older volcanic rocks, rising directly into the town.

Lava-cooling operations


The threat of lava flows cutting off the harbour was the most significant facing the town. One contingency plan devised should the harbour be closed off was to cut through a low sand spit on the north side of the island to provide a new channel into the harbour, but it was hoped that if the lava flow could be slowed, this would not be necessary. Lava flows had been sprayed with water in attempts to slow them in Hawaii and on Mount Etna, but these had been rather small-scale operations with limited success. However, Professor Þorbjörn Sigurgeirsson of the University of Iceland calculated that it should easily be possible to cool the lava flows to the point of solidification by spraying them with sufficient sea water.

The first attempt to slow the lava flow by spraying the leading edge with sea water began on 7 February, and although the volume of water being pumped on was rather small at 100 litres/s, the flow was noticeably affected. The water cooling of the lava was slow, but achieved a maximum efficiency, with almost all the water being converted to steam. Once the viability of lava cooling had been proven, efforts to halt the flows were increased.

The pumping capacity was increased in early March, when a large chunk of the crater wall broke away from the summit of Eldfell and began to be carried along the top of the lava flow towards the harbour. The chunk, dubbed Flakkarinn (The Wanderer), would have seriously threatened the viability of the harbour if it had reached it, and the dredging boat Sandey was brought in on 1 March to prevent its advance. Professor Sigurgeirsson provided advice to the pumping crews on where to direct their efforts to most efficiently slow the flows.

The ensuing lava-cooling operations were the most ambitious that had ever been undertaken. The Sandey was able to spray up to 400 l/s onto the advancing flow, and a network of pipes was laid on top of the lava to distribute the seawater over as wide an area as possible. Wooden supports for the pipes caught fire where the lava was hottest, and even aluminium supports melted, but the pipes themselves were prevented from melting by the cold seawater flowing through them. Up to three acres of lava flow could be cooled at one time, with internal barriers then being created within the flow, which thickened and piled up upon itself.


The work involved in laying pipes over an active lava was highly dangerous, with low visibility due to the extensive emission of steam. Rough tracks were made onto the flow by bulldozing tephra, but these tracks quickly became very uneven and moved several metres a day. The pipelayers used bulldozers and walkie-talkies to advance through the steam to lay more pipes. The workers dubbed themselves 'The Suicide Squad', and managed to lay pipes up to 130 metres (430 ft) inward from the flow front, directly over the advance. Although several men sustained minor burns, no serious injuries were received.

By the end of March, a fifth of the town had been covered by lava flows, and increased pumping capacity was required. 32 pumps were brought in from the USA, which had a capacity of up to 1000 l/s. After these pumps began to cool the flow advancing towards the town, its movement slowed dramatically and soon stopped. Failure of pump shafts became a problem after a few weeks, probably because they were designed for pumping oil rather than water, and new and improved shafts had to be manufactured in Reykjavík and brought in.

One notable feature of the lava cooling operation was the deposit of large amounts of salt where seawater was sprayed onto the lava. Large expanses of flow became encrusted with extensive white deposits, and it was estimated that up to 220,000 tonnes of salt was deposited in total.

The eruption had made headlines around the world when it began, and was covered constantly by Icelandic news crews throughout. In Europe, the eruption was one of the biggest news items while it continued, competing for front page space with breakthroughs then being made in the Vietnam War peace talks in Paris. The efforts of the islanders to halt the lava flows received particular attention, with coverage in publications such as National Geographic (e.g. Volcano overwhelms an Icelandic village, 1973). The attention focussed on the island as a result of the eruption led to a later upsurge in tourism once the eruption was over [1].

The eruption dies down


The volume of lava being emitted during the eruption fell steadily after the first few days. From its initial rate of 100 m³/s, the emission rate fell to about 60 m³/s by 8 February, and just 10 m³/s by the middle of March. The decline was slower after that, but by the middle of April the flow rate had fallen to about 5 m³/s.

Short-lived submarine activity was discovered by a fishing vessel on 26 May, about 4km north-east of Heimaey and 1km off the coast of the mainland. The eruption finally came to an end in early July, when flowing lava was no longer visible, although subsurface flows may have continued for a few days longer. Shortly before the end of the eruption, a tiltmeter 1.15 km from the crater which had been measuring ground deformation throughout the eruption detected subsidence towards the crater, implying that the shallow magma chamber which had fed the eruption was emptying out.

In total, the volume of lava and tephra emitted during the five-month eruption was estimated to be about 0.25 km³ (0.06 cubic miles). About 2.5 km² (0.96 square miles) of new land was added to the island, increasing its pre-eruption area by some 20%. In the end, the harbour entrance was narrowed considerably but not closed off, and the new lava flow acted as a breakwater, actually improving the shelter afforded by the harbour. Flakkarinn rafted several hundred metres towards the harbour along the top of the lava flow, but came to a halt well away from the water's edge.

Heimaey since the eruption


The insides of lava flows can remain at temperatures of several hundred °C for many years due to the very low thermal conductivity of rock. Following the end of the eruption, scientists began to assess the feasibility of extracting geothermal heat from the gradually cooling flows. Experimental heating systems were soon devised, and by 1974 the first house was connected. The scheme was extended to several more houses and the hospital, and in 1979 construction began of four larger plants to extract heat from the flows. Each plant extracted energy from a square 100 m on each side, by percolating water down into the hot parts and collecting the resulting steam. Up to 40 megawatts of power could be generated by the plants, which also then supplied hot water to nearly every house on the island.


The abundant tephra produced by the eruption was used to extend the runways at the island's small airport, and also as landfill on which 200 new homes were built. By mid-1974, about half the pre-eruption population had returned to the island, and by March 1975, about 80% had returned. The recovery and reconstruction of Heimaey was paid for by all Icelanders via a hypothecated sales tax, as well as through international aid totalling USD2.1 million, primarily from Denmark but with substantial contributions from the USA and several international organisations. With the harbour improved by the new lava breakwater, the fishing industry regained its former vigour and the island today remains the most important fishing centre in the nation.

By the end of the eruption, Eldfell stood about 220 m (720 ft) above sea level. Since then, its height has dropped by 18-20 m (60-65 ft), due to slumping and compacting of the unconsolidated gravelly tephra as well as wind erosion. The islanders have planted grass around the lower slopes of the otherwise bare hill, to stabilise it against further erosion, and eventually it is expected that most of the volcano will be covered by grass, as neighbouring Helgafell is.

References

  1. Centre for Short-Lived Phenomena bulletins 1545, 1547, 1552, 1567, published by the Smithsonian Astrophysical Observatory
  2. Kristjansson L., Simon I., Cohen M.L., Björnsson S. (1975), Ground tilt measurements during the 1973 Heimaey eruption, Journal of Geophysical Research, v. 80, p. 2951-2954
  3. Lava-Cooling Operations During the 1973 Eruption of Eldfell Volcano, Heimaey, Vestmannaeyjar, Iceland, U.S. Geological Survey Open-File Report 97-724
  4. Mattsson H., Hoskuldsson A. (2003), Geology of the Heimaey volcanic centre, south Iceland: early evolution of a central volcano in a propagating rift?, Journal of Volcanology and Geothermal Research, v. 127, p. 55-71
  5. Williams Jr. R.S., Moore J.G., (1983), Man Against Volcano: The Eruption on Heimaey, Vestmannaeyjar, Iceland, 2nd edition, published by USGS

External links

Last updated: 06-02-2005 13:52:55
Last updated: 10-29-2005 02:13:46