Search

The Online Encyclopedia and Dictionary

 
     
 

Encyclopedia

Dictionary

Quotes

 

Eccentricity (orbit)

This page refers to eccentricity in astrodynamics. For other uses, see the disambiguation page eccentricity.

In astrodynamics, under standard assumptions any orbit must be of conic section shape. The eccentricity of this conic section, the orbit's eccentricity, is an important parameter of the orbit that defines its absolute shape. Eccentricity may be interpreted as a measure of how much this shape deviates from a circle.

Under standard assumptions eccentricity (e\,\!) is strictly defined for all circular, elliptic, parabolic and hyperbolic orbits and may take following values:

Calculation

Eccentricity of an orbit can be calculated from orbital state vectors as a magnitude of eccentricity vector:

e= \left | \mathbf{e} \right |

where:


For elliptic orbits it can also be calculated from distance at periapsis and apoapsis:

e={{d_a-d_p}\over{d_a+d_p}}=1-\frac{2}{\frac{d_a}{d_p}+1}=\frac{2}{\frac{d_p}{d_a}+1}-1

where:

Examples

For example, the eccentricity of the Earth's orbit today is 0.0167. Through time, the eccentricity of the Earth's orbit slowly changes from nearly 0 to almost 0.05 as a result of gravitational attractions between the planets (see graph [1]).

Other values: Pluto 0.2488 (largest value among the planets of the Solar System), Mercury 0.2056, Moon 0.0554. For the values for all planets in one table, see .

See also

External links

Last updated: 06-02-2005 05:02:39
The contents of this article are licensed from Wikipedia.org under the GNU Free Documentation License. How to see transparent copy