 Search

# The Online Encyclopedia and Dictionary   ## Encyclopedia ## Dictionary ## Quotes  # Diffeomorphism

In mathematics, a diffeomorphism is a kind of isomorphism of smooth manifolds. The mathematical definition is as follows. Given two differentiable manifolds M and N, a bijective map f from M to N is called a diffeomorphism if both $f:M\to N$ and its inverse $f^{-1}:N\to M$ are smooth.

Two manifolds M and N are diffeomorphic (symbol being usually $\simeq$) if there is a diffeomorphism f from M to N. For example $\mathbb{R}/\mathbb{Z} \simeq S^1.$
 Contents

## Local description

Model example: if U and V are two open subsets of $\mathbb{R}^n$, a differentiable map f from U to V is a diffeomorphism if

1. it is a bijection,
2. its differential df is invertible (as the matrix of all $\partial f_i/\partial x_j$, $1 \leq i,j \leq n$).

Remarks:

• Condition 2 excludes diffeomorphisms going from dimension n to a different dimension k (the matrix of df would not be square hence certainly not invertible).
• A differentiable bijection is not necessarily a diffeomorphism, e.g. f(x) = x3 is not a diffeomorphism from $\mathbb{R}$ to itself because its derivative vanishes at 0.
• f also happens to be a homeomorphism.

Now, f from M to N is called a diffeomorphism if in coordinates charts it satisfies the definition above. More precisely, pick any cover of M by compatible coordinate charts, and do the same for N. Let φ and ψ be charts on M and N respectively, with U being the image of φ and V the image of ψ. Then the conditions says that the map ψfφ - 1 from U to V is a diffeomorphism as in the definition above (whenever it makes sense). One has to check that for every couple of charts φ, ψ of two given atlases, but once checked, it will be true for any other compatible chart. Again we see that dimensions have to agree.

## Diffeomorphism group

The diffeomorphism group of a manifold is the group of all its self-diffeomorphisms. For dimension ≥ 1 this is a large group (too big to be a Lie group). For a connected manifold M the diffeomorphisms act transitively on M: this is true locally because it is true in Euclidean space and then a topological argument shows that given any p and q there is a diffeomorphism taking p to q. That is, all points of M in effect look the same, intrinsically. The same is true for finite configurations of points, so that the diffeomorphism group is k- fold multiply transitive for any integer k ≥ 1, provided the dimension is at least two (it is not true for the case of the circle or real line).

## Homeomorphism and diffeomorphism

It is easy to find a homeomorphism which is not a diffeomorphism, but it is more difficult to find a pair of homeomorphic manifolds that are not diffeomorphic. In dimensions 1, 2, 3, any pair of homeomorphic smooth manifolds are diffeomorphic. In dimension 4 or greater, examples of homeomorphic but not diffeomorphic pairs have been found. The first such example was constructed by John Milnor in dimension 7, he constructed a smooth 7-dimensional manifold (called now Milnor's sphere ) which is homeomorphic to the standard 7-sphere but not diffeomorphic to it. There are in fact 28 oriented diffeomorphism classes of manifolds homeomorphic to the 7-sphere (each of them is a fiber bundle over the 4-sphere with fiber the 3-sphere).

Much more extreme phenomena occur: in the early 1980s, a combination of results due to Fields Medal winners Simon Donaldson and Michael Freedman led to the discoveries that there are uncountably many pairwise non-diffeomorphic open subsets of $\mathbb{R}^4$ each of which is homeomorphic to $\mathbb{R}^4$, and also that there are uncountably many pairwise non-diffeomorphic differentiable manifolds homeomorphic to $\mathbb{R}^4$ which do not embed smoothly in $\mathbb{R}^4$.  