Search

The Online Encyclopedia and Dictionary

 
     
 

Encyclopedia

Dictionary

Quotes

 

Subgroup

In mathematics, given a group G under a binary operation *, we say that some subset H of G is a subgroup of G if H also forms a group under the operation *. More precisely, H is a subgroup of G if the restriction of * to H is a group operation on H.

A proper subgroup of a group G is a subgroup H which is a proper subset of G (i.e. HG). The trivial subgroup of any group is the subgroup {e} consisting of just the identity element.

The same definitions apply more generally when G is an arbitrary semigroup, but this article will only deal with subgroups of groups. The group G is sometimes denoted by the ordered pair (G,*), usually to emphasize the operation * when G carries multiple algebraic or other structures.

In the following, we follow the usual convention of dropping * and writing the product a*b as simply ab.

Basic properties of subgroups

  • H is a subgroup of the group G if and only if it is nonempty and closed under products and inverses. (The closure conditions mean the following: whenever a and b are in H, then ab and a−1 are also in H. These two conditions can be combined into one equivalent condition: whenever a and b are in H, then ab−1 is also in H.) In the case that H is finite, it is enough that H is closed under products, since the closure under inverse follows automatically in that case.
  • The identity of a subgroup is the identity of the group: if G is a group with identity eG, and H is a subgroup of G with identity eH, then eH = eG.
  • The inverse of an element in a subgroup is the inverse of the element in the group: if H is a subgroup of a group G, and a and b are elements of H such that ab = ba = eH, then ab = ba = eG.
  • If S is a subset of G, then there exists a minimum subgroup containing S; it is denoted by <S> and is said to be the subgroup generated by S. An element of G is in <S> if and only if it is a finite product of elements of S and their inverses.
  • Every element a of a group G generates the cyclic subgroup <a>. If <a> is isomorphic to Z/nZ for some positive integer n, then n is the smallest positive integer for which an = e, and n is called the order of a. If <a> is isomorphic to Z, then a is said to have infinite order.
  • The subgroups of any given group form a complete lattice under inclusion. (While the infimum here is the usual set-theoretic intersection, the supremum of a set of subgroups is the subgroup generated by the set-theoretic union of the subgroups, not the set-theoretic union itself.) If e is the identity of G, then the trivial group {e} is the minimum subgroup of G, while the maximum subgroup is the group G itself.

Cosets and Lagrange's theorem

Given a subgroup H and some a in G, we define the left coset aH = {ah : h in H}. Because a is invertible, the map φ : H -> aH given by h |-> ah is a bijection. Furthermore, every element of G is contained in precisely one left coset of H; the left cosets are the equivalence classes corresponding to the equivalence relation a1 ~ a2 iff a1−1a2 is in H. The number of left cosets of H is called the index of H in G and is denoted by [G : H]. Lagrange's theorem states that

[G : H] |H| = |G|

where |G| and |H| denote the cardinalities of G and H, respectively. In particular, if G is finite, then the cardinality of every subgroup of G (and the order of every element of G) must be a divisor of |G|.

Right cosets are defined analogously: Ha = {ha : h in H}. They are also the equivalence classes for a suitable equivalence relation and their number is equal to [G : H].

If aH = Ha for every a in G, then H is said to be a normal subgroup.

Last updated: 08-22-2005 12:08:17
The contents of this article are licensed from Wikipedia.org under the GNU Free Documentation License. How to see transparent copy