In mathematics, a probability distribution assigns to every interval of the real numbers a probability, so that the probability axioms are satisfied. In technical terms, a probability distribution is a probability measure whose domain is the Borel algebra on the reals.
A probability distribution is a special case of the more general notion of a probability measure, which is a function that assigns probabilities satisfying the Kolmogorov axioms to the measurable sets of a measurable space.
Every random variable gives rise to a probability distribution, and this distribution contains most of the important information about the variable. If X is a random variable, the corresponding probability distribution assigns to the interval [a, b] the probability Pr[a ≤ X ≤ b], i.e. the probability that the variable X will take a value in the interval [a, b].
The probability distribution of the variable X can be uniquely described by its cumulative distribution function F(x), which is defined by
for any x in R.
A distribution is called discrete if its cumulative distribution function consists of a sequence of finite jumps, which means that it belongs to a discrete random variable X: a variable which can only attain values from a certain finite or countable set. A distribution is called continuous if its cumulative distribution function is continuous, which means that it belongs to a random variable X for which Pr[ X = x ] = 0 for all x in R.
The so-called absolutely continuous distributions can be expressed by a probability density function: a non-negative Lebesgue integrable function f defined on the reals such that
for all a and b. That discrete distributions do not admit such a density is unsurprising, but there are continuous distributions like the devil's staircase that also do not admit a density.
The support of a distribution is the smallest closed set whose complement has probability zero.
List of important probability distributions
Several probability distributions are so important in theory or applications that they have been given specific names:
Discrete distributions
With finite support
- The Bernoulli distribution, which takes value 1 with probability p and value 0 with probability q = 1 − p.
- The Rademacher distribution, which takes value 1 with probability 1/2 and value −1 with probability 1/2.
- The binomial distribution, which describes the number of successes in a series of independent Yes/No experiments.
- The degenerate distribution at x0, where X is certain to take the value x0. This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism.
- The discrete uniform distribution, where all elements of a finite set are equally likely. This is supposed to be the distribution of a balanced coin, an unbiased die, a casino roulette or a well-shuffled deck. Also, one can use measurements of quantum states to generate uniform random variables. All these are "physical" or "mechanical" devices, subject to design flaws or perturbations, so the uniform distribution is only an approximation of their behaviour. In digital computers, pseudo-random number generators are used to produced a statistically random discrete uniform distribution.
- The Ewens sampling formula is a probability distribution on the set of all partitions of an integer n, arising in population genetics.
- The hypergeometric distribution, which describes the number of successes in the first m of a series of n independent Yes/No experiments, if the total number of successes is known.
-
Zipf's law or the Zipf distribution. A discrete power-law distribution, the most famous example of which is the description of the frequency of words in the English language.
- The Zipf-Mandelbrot law is a discrete power law distribution which is a generalization of the Zipf distribution.
With infinite support
- The Boltzmann distribution, a discrete distribution important in statistical physics which describes the probabilities of the various discrete energy levels of a system in thermal equilibrium. It has a continuous analogue. Special cases include:
- The geometric distribution, a discrete distribution which describes the number of attempts needed to get the first success in a series of independent Yes/No experiments.
Continuous distributions
Supported on a bounded interval
- The Beta distribution on [0,1], of which the uniform distribution is a special case, and which is useful in estimating success probabilities.
- The continuous uniform distribution on [a,b], where all points in a finite interval are equally likely.
- The Dirac delta function although not strictly a function, is a limiting form of many continuous probability functions. It represents a discrete probability distribution concentrated at 0 — a degenerate distribution — but the notation treats it as if it were a continuous distribution.
- The logarithmic distribution (continuous)
- The triangular distribution on [a, b], a special case of which is the distribution of the sum of two uniformly distributed random variables (the convolution of two uniform distributions).
- The von Mises distribution
- The Wigner semicircle distribution is important in the theory of random matrices.
Supported on semi-infinite intervals, usually [0,∞)
- The chi distribution
- The chi-square distribution, which is the sum of the squares of n independent Gaussian random variables. It is a special case of the Gamma distribution, and it is used in goodness-of-fit tests in statistics.
- The Gamma distribution, which describes the time until n consecutive rare random events occur in a process with no memory.
- Fisher's z-distribution
- The half-normal distribution
- The log-logistic distribution
- The log-normal distribution, describing variables which can be modelled as the product of many small independent positive variables.
- The Pareto distribution, or "power law" distribution, used in the analysis of financial data and critical behavior.
- The Rice distribution
- The type-2 Gumbel distribution
- The Wald distribution
- The Weibull distribution, of which the exponential distribution is a special case, is used to model the lifetime of technical devices.
Supported on the whole real line
- The Beta prime distribution
- The Cauchy distribution, an example of a distribution which does not have an expected value or a variance. In physics it is usually called a Lorentzian profile, and is associated with many processes, including resonance energy distribution, impact and natural spectral line broadening and quadratic stark line broadening.
- The Fisher-Tippett, extreme value, or log-Weibull distribution
- The Landau distribution
- The Laplace distribution
- The Levy stable distribution is often used to characterize financial data and critical behavior.
- The map-Airy distribution
- The normal distribution, also called the Gaussian or the bell curve. It is ubiquitous in nature and statistics due to the central limit theorem: every variable that can be modelled as a sum of many small independent variables is approximately normal.
-
Rayleigh distribution
-
Student's t-distribution, useful for estimating unknown means of Gaussian populations.
- The noncentral t-distribution
- The type-1 Gumbel distribution
- The Voigt distribution, or Voigt profile, is the convolution of a normal distribution and a Cauchy distribution. It is found in spectroscopy when spectral line profiles are broadened by a mixture of Lorentzian and Doppler broadening mechanisms.
Joint distributions
Two or more random variables on the same sample space
Matrix-valued distributions
Miscellaneous distributions
See also
Last updated: 05-07-2005 03:40:46
Last updated: 05-13-2005 07:56:04