Online Encyclopedia
Modal logic
Modal logic, or (less commonly) intensional logic is the branch of logic that deals with sentences that are qualified by modalities such as can, could, might, may, must, possibly, and necessarily, and others. Any logical system making use of modal operators, such as possibly, or necessarily is thus also called a modal logic. Modal logics are characterized by semantic intensionality: non-modal logics all have the feature that the truth value of a complex sentence is determined by the truth values of its sub-sentences. They are thus extensional. In modal logics, by contrast, this does not hold: both "Bush is president" and "2+2=4" are true, yet "Necessarily, Bush is president" is false, while "Necessarily, 2+2=4" is true. Necessity and possibility are the most widely discussed modalities in work on modal logic, and most work on necessity and possibility focuses on the so-called alethic modalities, but there are other senses of necessity and possibility, and other modalities as well.
A formal modal logic represents modalities using modal sentential operators. The basic set of modal operators are usually given to be and . In alethic modal logic the represents necessity and the possibility. A sentence is said to be
- possible if it might be true (whether it is actually true or actually false);
- necessary if it could not possibly be false;
- contingent if it is not necessarily true, i.e., is possibly true, and possibly false. A contingent truth is one which is actually true, but which could have been otherwise.
Contents |
Metaphysical and other modalities
Alethic, epistemic
Modal logic is most often used for talk of the so-called alethic modalities (from the Greek aletheia, truth): "it is necessarily the case that..." or "it is possibly the case that...." These (which include metaphysical modalities, logical modalities, and subjunctive modalities) are most easily confused with epistemic modalities (from the Greek episteme, knowledge): "It is certainly true that..." and "It may (given the available information) be true that..." In ordinary speech both modalities are often expressed with the same words; the following contrasts may help:
A person, Jones, might reasonably say both (1) I am certain that Bigfoot does not exist; it's impossible, and (2) sure, Bigfoot possibly could exist. What Jones means by (1) is that given all the available information, there is no question remaining as to whether Bigfoot exists. This is an epistemic claim. By (2) he means that things might have been otherwise. He does not mean "it's possible that Bigfoot exists--for all I know." (So he is not contradicting (1).) Rather, he is making the metaphysical claim that it's possible for Bigfoot to exist, even though he doesn't.
From the other direction, Jones might say (3) it's possible that Goldbach's conjecture is true, but also possible that it is false, and also (4) if it is true, then it is necessarily true, and not possibly false. Here Jones means that it is epistemically possible that it is true or false, for all he knows (Goldbach's conjecture has not been proven either true or false). But if there *is* a proof (heretofore undiscovered), then that would show that it is not logically possible for Goldbach's conjecture to be false—there could be no set of numbers that violated it. Logical possibility is a form of alethic possibility; (4) makes a claim about whether it is possible for a mathematical truth to have been false, but (3) only makes a claim about whether it is possible that the mathematical claim turns out false, for all Jones knows, and so again Jones does not contradict himself.
Epistemic possibilities also bear on the actual world in a way that metaphysical possibilities do not. Metaphysical possibilities bear on ways the world might have been, but epistemic possibilities bear on the way the world may be (for all we know). Suppose, for example, that I want to know whether or not to take an umbrella before I leave. If you tell me "It's possible that it is raining outside"--in the sense of epistemic possibility--then that would weigh on whether or not I take the umbrella. But if you just tell me that "It's possible for it to rain outside"--in the sense of metaphysical possibility--then I am no better off for this bit of modal enlightenment.
The vast bulk of philosophical literature on modalities concerns metaphysical rather than epistemic modalities. (Indeed, most of it concerns the broadest sort of metaphysical modality--that is, bare logical possibility). This is not to say that metaphysical possibilities are more important to our everyday life than epistemic possibilities (consider the example of deciding whether or not to take an umbrella). It's just to say that the priorities in philosophical investigations are rarely set by importance to everyday life--and that should be surprising to no-one.
Deontic, temporal
There are several analogous modes of speech, which though less likely to be confused with alethic modalities are still closely related. One is talk of time. It seems reasonable to say that possibly it will rain tomorrow, and possibly it won't; on the other hand, if it rained yesterday, if it really already did so, then it cannot be quite correct to say "It may not have rained yesterday." It seems the past is "fixed," or necessary, in a way the future isn't. Many philosophers and logicians think this reasoning isn't very good; but the fact remains that we often talk this way and it is good to have a logic to capture its structure. Likewise talk of morality, or of obligation and norms generally, seems to have a modal structure. The difference between "You must do this" and "You may do this" looks a lot like the difference between "This is necessary and this is possible." Such logics are called deontic, from the Greek for "duty".
Significantly, modal logics can be developed to accommodate most of these idioms; it is the fact of their common logical structure (the use of "intensional" or non-truth-functional sentential operators) that make them all varieties of the same thing. Epistemic logic is (arguably) best captured in the system "S4" ; deontic logic in the system "D", temporal logic in "t" (sic:lowercase) and alethic logic with "S5".
Possible worlds and the interpretation of modal logic
In the most common interpretation of modal logic, one considers "all logically possible worlds". If a statement is true in all possible worlds, then it is a necessary truth. If a statement happens to be true in our world, but is not true in all possible worlds, then it is a contingent truth. A statement that is true in some possible world (not necessarily our own) is called a possible truth.
Whether this "possible worlds idiom" is the best way to interpret modal logic, and how literally this idiom can be taken, is a live issue for metaphysicians. For example, the possible worlds idiom which would translate the claim about Bigfoot as "There is some possible world in which Bigfoot exists". To maintain that Bigfoot's existence is possible, but not actual, one could say, "There is some possible world in which Bigfoot exists; but in the actual world, Bigfoot does not exist". But it is unclear what it is that making modal claims commits us to. Are we really alleging the existence of possible worlds, every bit as real as our actual world, just not actual? David Lewis infamously bit the bullet and said yes, possible worlds are as real as our own. This position is called "modal realism ". Unsurprisingly, most philosophers are unwilling to sign on to this particular doctrine, seeking alternate ways to paraphrase away the apparent ontological commitments implied by our modal claims.
Formal rules
The concepts of necessity and possibility enjoy the following de Morganesque relationship:
- "It is not necessary that X" is equivalent to "It is possible that not X.
- "It is not possible that X" is equivalent to "It is necessary that not X.
Modal logic adds to the well formed formulae of propositional logic operators for necessity and possibility. In some notations "necessarily p" is represented using a "box" ( ), and "possibly p" is represented using a "diamond" (). Whatever the notation, the two operators are definable in terms of each other:
- (necessarily p) has the same meaning as (not possible that not-p)
- (possibly p) has the same meaning as (not necessarily not-p)
Precisely what axioms must be added to propositional logic to create a usable system of modal logic has been the subject of much debate. One weak system, named K after Saul Kripke, adds only the following:
- Necessitation Rule: If p is a theorem of K, then so is .
- Distribution Axiom: If then (this is also known as axiom K)
These rules lack an axiom to go from the necessity of p to p actually being the case, and therefore are usually supplemented with:
- (If it's necessary that p, then p is the case)
Even with the addition of this axiom, however, K still does not have the rules needed to determine cases where one modal operator ranges over another. For example, K does not determine whether implies , i.e., it does not say whether necessary truths are necessarily necessary, or whether it is possible for them not to be necessary. This may not be a great defect for K, since these seem like awfully strange questions and any attempt to answer them involves us in confusing issues. In any case, different solutions to questions such as these produce different systems of modal logic.
The system most commonly used today is modal logic S5, which robustly answers the questions by adding axioms which make all modal truths necessary: for example, if it's possible that p, then it's necessarily possible that p, and if it's necessary that p it's also necessary that it's necessary. This has the benefit that it fits well with our intuitions about the idiom of possible worlds: if P is true at all possible worlds, then it seems that there can be no possible world at which it is true that there is some possible world where P is false (for if there were such a world, then it would just be the case that P is not true at all possible worlds). Nevertheless, other systems of modal logic have been formulated, in part, because S5 may not be a good fit for every kind of metaphysical modality of interest to us. (And if so, that may mean that possible worlds talk isn't a good fit for these kinds of modality either.)
Development of the field of modal logic
Although Aristotle's logic is almost entirely concerned with the theory of the categorical syllogism, his work also contains some extended arguments on points of modal logic (such as his famous Sea-Battle Argument in De Interpretatione § 9) and their connection with potentialities and with time. Following on his works, the Scholastics developed the groundwork for a rigorous theory of modal logic, mostly within the context of commentary on the logic of statements about essence and accident. Among the medieval writers, some of the most important works on modal logic can be found in the works of William of Ockham and John Duns Scotus.
The contemporary logical analysis of modality can be traced to C. I. Lewis's "A Survey of Symbolic Logic" (1918), in which he developed the logical systems S1-S5. J. C. C. McKinsey used algebraic methods (Boolean algebras with operators) to prove the decidability of Lewis' S2 and S4 in 1941. Saul Kripke developed the relational semantics for modal logics (1959, 1963). Vaughan Pratt introduced dynamic logic in 1976. Amir Pnueli proposed the use of temporal logic to formalise the behaviour of continually operating concurrent programs in 1977.
Temporal logic is closely related to modal logic, as adding modal operators [F] and [P], meaning, respectively, henceforth and hitherto, leads to a system of temporal logic.
Flavours of modal logics include: propositional dynamic logic (PDL), propositional linear temporal logic (PLTL), linear temporal logic (LTL), computational tree logic (CTL), Hennessy-Milner logic , S1-S5, and T.
References
- Robert Goldblatt, "Logics of Time and Computation", CSLI Lecture Notes No. 7, Centre for the Study of Language and Information, Stanford University, Second Edition, 1992, (distributed by University of Chicago Press).
- Robert Goldblatt, "Mathematics of Modality", CSLI Lecture Notes No. 43, Centre for the Study of Language and Information, Stanford University, 1993, (distributed by University of Chicago Press).
- G.E. Hughes and M.J. Cresswell, "An Introduction to Modal Logic", Methuen, 1968.
- E.J. Lemmon (with Dana Scott), "An Introduction to Modal Logic", American Philosophical Quarterly Monograpph Series, no. 11 (ed. by Krister Segerberg), Basil Blackwell, Oxford, 1977.
See also
- De dicto and de re
- Hybrid logic
- Interior algebra
- Interpretability logic
- Provability logic
- Kripke semantics
External links
- Stanford Encyclopedia of Philosophy entry http://plato.stanford.edu/entries/logic-modal/
- A discussion of modal logic http://www-formal.stanford.edu/jmc/mcchay69/node22.html by John McCarthy
- Peter Suber's Bibliography of Non-Standard Logics http://www.earlham.edu/~peters/courses/logsys/nonstbib.htm
This article contains some material originally from the Free On-line Dictionary of Computing which is used with permission under the GFDL.