Online Encyclopedia Search Tool

Your Online Encyclopedia


Online Encylopedia and Dictionary Research Site

Online Encyclopedia Free Search Online Encyclopedia Search    Online Encyclopedia Browse    welcome to our free dictionary for your research of every kind

Online Encyclopedia

Electronic filter

An electronic filter eliminates unwanted frequencies from an electronic signal. There are several kinds of electronic filters:

This article will consider the design and construction techniques common to all these filter types. Band-stop and band-pass filters can be constructed by combining low-pass and high-pass filters. A popular form of 2 pole filter is the Sallen-Key type. This is able to provide low-pass, band-pass, and high pass versions.


Passive filters

The simplest electronic filters are based on combinations of resistors, inductors and capacitors. Since resistance has the symbol R, inductance the symbol L and capacitance the symbol C, these filters exist in so-called RC, RL, LC and RLC varieties. All these types are collectively known as passive filters, because they are activated by the power in the signal and not by an external power supply.

Here's how passive filters work: inductors block high-frequency signals and conduct low-frequency signals, while capacitors do the reverse. A filter in which the signal passes through an inductor, or in which a capacitor provides a path to earth, therefore transmits low-frequency signals more strongly than high-frequency signals and is a low-pass filter. If the signal passes through a capacitor, or has a path to ground through an inductor, then the filter transmits high-frequency signals more strongly than low-frequency signals and is a high-pass filter. Resistors on their own have no frequency-selective properties, but are added to inductors and capacitors to determine the time-constants of the circuit, and therefore the frequencies to which it responds.

At very high frequencies (above about 100 megahertz), sometimes the inductors consist of single loops or strips of sheet metal, and the capacitors consist of adjacent strips of metal. These are called stubs. Other components can be added to LC filters to make them more precise.

Filters are measured by their quality or "Q" factor. A filter is said to have a high Q if it selects or rejects a narrow range of frequencies compared with the absolute frequency at which it operates. Quality can be measured by the precision of a harmonic oscillator implemented with that type of device.

Active filters

Active filters are implemented using a combination of passive and active components. Operational amplifiers are frequently used in active filter designs. These can have high Q, and achieve resonance without the use of inductors. However, their upper frequency limit is limited by the bandwidth of the amplifiers used.

Other filters

Quartz filters and piezoelectrics

In the late 1930s, engineers realized that small mechanical systems made of rigid materials such as quartz would acoustically resonate at radio frequencies, i.e. from audible frequencies (sound) up to several hundred megahertz.

Some early resonators were made of steel, but quartz quickly became favored. The biggest advantage of quartz is that it is piezoelectric. This means that quartz resonators can directly convert their own mechanical motion into electrical signals. Quartz also has a very low coefficient of thermal expansion. This means that quartz resonators produce stable frequencies over a wide temperature range.

Quartz crystal filters have much higher quality factors than LCR filters. When higher stabilities are required, the crystals and their driving circuits may be mounted in a "crystal oven" to control the temperature. For very narrow filters, sometimes several crystals are operated in series.

Engineers realized that a large number of crystals could be collapsed into a single component, by mounting comb-shaped evaporations of metal on a quartz crystal. In this scheme, a "tapped delay line" reinforces the desired frequencies as the sound waves flow across the surface of the quartz crystal. The tapped delay line has become a general scheme of making high-Q filters in many different ways.

Filtering by digital signal processing

A finite impulse response filter
A finite impulse response filter

Digital signal processing allows the inexpensive construction of a wide variety of filters. The signal is sampled and an analog to digital converter turns the signal into a stream of numbers. A computer program running on a CPU or a specialized DSP, less often a hardware implementation of the algorithm, calculates an output number stream. This output is converted to a signal by passing it through a digital to analog converter. There are problems with noise introduced by the conversions, but these can be controlled and limited for many useful filters. Due to the sampling involved, the input signal must be of limited frequency content or aliasing will occur. See also: Digital filter.

Garnet filters

Another method of filtering, at frequencies from 800 megahertz to about 5 gigahertz, is to use a synthetic single-crystal garnet sphere made of a chemical combination of titanium, iron and nitrogen. The garnet sits on a strip of metal driven by a transistor, and a small loop antenna touches the top of the sphere. An electromagnet changes the frequency that the garnet will pass. The advantage of this method is that the garnet can be tuned over a very wide frequency by varying the strength of the magnetic field.

Atomic filters

For even higher frequencies and greater precision, the electrons of atoms must be used. Atomic clocks use caesium masers as ultra-high Q filters to stabilize their primary oscillators. Another method, used at high, fixed frequencies with very weak radio signals, is to use a ruby maser tapped delay line.

See also

Last updated: 10-24-2004 05:10:45