Online Encyclopedia Search Tool

Your Online Encyclopedia

 

Online Encylopedia and Dictionary Research Site

Online Encyclopedia Free Search Online Encyclopedia Search    Online Encyclopedia Browse    welcome to our free dictionary for your research of every kind

Online Encyclopedia



Coulomb's law

(Redirected from Coulomb force)

In physics, Coulomb's law is an inverse-square law indicating the magnitude and direction of electrical force that one stationary, electrically charged substance of small volume (ideally, a point source) exerts on another.

When one is interested only in the magnitude of the force (and not in its direction), it may be easiest to consider a simplified, scalar version of the Law

F = \frac{\left|q_1 q_2\right|}{4 \pi \epsilon_0 r^2}

where (in SI units):

F is the magnitude of the force exerted, measured in Newtons

q1 is the charge on one substance, measured in Coulombs

q2 is the charge on the other, also measured in Coulombs

r is the distance between them measured in metres

ε0 is a universal constant, the permittivity of vacuum

ε0 ≈ 8.854 &times 10−12 Fm−1 or C2N−1m−2

Note that \frac{1}{\mu_0\epsilon_0}=c^2, where μ0 is the permeability of vacuum and c is the speed of light.)

Among other things, this formula says that the magnitude of the force is directly proportional to the magnitude of the charges of each substance and inversely proportional to the square of the distance between them.

The force F acts on the line connecting the two charged objects.

For calculating the direction and magnitude of the force simultaneously, one will wish to consult the full-blown vector version of the Law

\mathbf{F} = \frac{q_1 q_2 \mathbf{r}}{4 \pi \epsilon_0 \left|\mathbf{r}\right|^3}

where \mathbf{F} is the electrostatic force vector,

and \mathbf{r} is the vector between the two charges, such that

\mathbf{r}=\mathbf{r_1}-\mathbf{r_2}

where r1 is vector indicating the position of the charge on which the force acts,

and r2 is the vector indicating the position of the other charge.

This vector equation indicates that opposite charges attract, and like charges repel. When q1q2 is negative, the force is attractive. When positive, the force is repulsive. |r| has been raised to the third power instead of the second in the denominator in order to normalize the length of the r vector in the numerator to 1.

In either formulation, Coulomb's Law is fully accurate only when the substances are static (stationary), and remains approximately correct only for slow movement. When movement takes place, magnetic fields are produced that alter the force on the two substances. Especially when rapid movement takes place, the electric field will also undergo a transformation described by Einstein's theory of relativity.

See also



Last updated: 10-24-2004 05:10:45