Online Encyclopedia Search Tool

Your Online Encyclopedia


Online Encylopedia and Dictionary Research Site

Online Encyclopedia Free Search Online Encyclopedia Search    Online Encyclopedia Browse    welcome to our free dictionary for your research of every kind

Online Encyclopedia


(Redirected from Clade)
This cladogram shows the relationship among various insect groups. In some cladograms, the length of the horizontal lines indicates time elapsed since the last common ancestor.
This cladogram shows the relationship among various insect groups. In some cladograms, the length of the horizontal lines indicates time elapsed since the last common ancestor.

Cladistics or phylogenetic systematics is a branch of biology that determines the evolutionary relationships of living things based on derived similarities. It forms the basis for most modern systems of classification, which seek to group organisms by evolutionary relationships. In contrast, phenetics groups organisms based on their overall similarity, while more traditional approaches tend to rely on key characters. Willi Hennig is widely regarded as the founder of cladistics.



Based on a wide variety of information, which includes genetic analysis, biochemical analysis, and analysis of morphology, treelike relationship-diagrams called "cladograms" are drawn up to show different possibilities.

A vertical orientation yields a cladogram reminiscent of a tree.
A vertical orientation yields a cladogram reminiscent of a tree.

In a cladogram, all organisms lie at the leaves, and each inner node is ideally binary (two-way). The two taxa on either side of a split are called sister taxa or sister groups. Each subtree, whether it only contains one item or a hundred thousand, is called a clade. A correct cladogram should have all the organisms contained in any one clade share a unique ancestor for that clade, one which they do not share with any other organisms on the diagram. Each clade should be set off by a series of characteristics that appear in its members but not in the other forms it diverged from. These identifying characteristics of a clade are called synapomorphies (shared, derived characters). For instance, hardened front wings are a synapomorphy of beetles, while circinate vernation, or the unrolling of new fronds, is a synapomorphy of ferns.

Cladistic methods

Typically, an analysis begins by collecting information on certain features of all the organisms in question, and then deciding which versions were present in their common ancestor (plesiomorphies) and which have been derived since (apomorphies). Usually this is done by considering some outgroup of organisms we know are not too closely related to any of the organisms in question. Only apomorphies are of any use in characterising cladistic divisions.

Next, different possible cladograms are drawn up and evaluated. Clades are typically drawn so that they can have as many synapomorphies as possible. The idea is that a sufficiently large number of characteristics should be large enough to overwhelm any examples of convergent evolution. In other words, there are many ways in which plants and animals, etc., may evolve features that resemble each other because of environmental conditions. A well-known example of convergent evolution is wings. Though the wings of birds and insects may superficially resemble one another and serve the same function, both evolved independently.

In practice, neutral features like exact ultrastructure (a term for extremely fine structure, microscopic or molecular composition of cellular structure) tend to do just that, to provide evidence for real relationships even when the appearance of organisms makes it otherwise difficult. When equivalent possibilities turn up, one is usually chosen based on the principle of parsimony: the most compact arrangement is likely the best (a variation of Occam's razor). Another approach, particularly useful in molecular evolution, is maximum likelihood, which selects the optimal cladogram that has the highest likelihood based on a specific probability model of changes.

Cladistics has taken a while to settle in, and there is still wide debate over how to apply Hennig's ideas in the real world. In particular, apomorphies are not always easy to distinguish and data are often unavailable due to a sparsity of available forms or a lack of knowledge of characters, and these may invalidate cladograms. There is also concern that use of widely different data sets, for instance structural versus genetic characteristics, may produce widely different trees. However, by and large the phylogenetic approach to systematics has proven useful and coherent and has gained general support.

As DNA sequencing has become easier, phylogenies are increasingly often constructed with the aid of molecular data. Computational systematics allows the use of these large data sets to construct objective phylogenies. These can more accurately filter out true synapomorphy from parallel evolution.

Cladistics does not assume any particular theory of evolution, only the background knowledge of descent with modification. Thus, cladistic methods can be, and recently have been, usefully applied to non-biological systems, including determining language families in historical linguistics and the filiation of manuscripts in textual criticism.

Cladistic classification

Three ways to define a clade for use in a cladistic taxonomy
Three ways to define a clade for use in a cladistic taxonomy

A recent trend in biology since the 1960s, called cladism or cladistic taxonomy, has been to require taxa to be clades. In other words cladists argue that the classification system should be reformed to eliminate all non-clades. In contrast, other evolutionary taxonomists insist that groups reflect phylogenies and often make use of cladistic techniques, but allow both monophyletic and paraphyletic groups as taxa.

A monophyletic group is a clade, comprising an ancestral form and all of its descendants, and so forming one (and only one) evolutionary group. A paraphyletic group is similar, but excludes some of the descendants that have undergone significant changes. For instance, the traditional class Reptilia excludes birds even though they developed from the ancestral reptile.

A group with members from separate evolutionary lines is called polyphyletic. For instance, the once-recognized Pachydermata was found to be polyphyletic because elephants and rhinoceroses arose separately from non-pachyderms. Evolutionary taxonomists consider polyphyletic groups to be errors in classification, often occurring because because convergence or other homoplasy was misinterpreted as homology.

Whether or not paraphyletic groups are valid taxa remains controversial. Cladists argue that deciding the relative importance for classification of various types of characters is inherently subjective and so not a valid basis for taxonomy, and that it should be replaced with a single objective (though inferred) criterion, the presence of synapomorphies. Some cladists have also argued that ranks are too subjective to present meaningful information, and so have moved away from Linnaean taxonomy towards a simple hierarchy of clades. A formal code of phylogenetic nomenclature, the Phylocode, is currently under development for such cladistic taxonomy.

Other evolutionary taxonomists argue that all taxa are inherently subjective, even when they reflect objective relationships. For instance, at some point Homo sapiens must have had an ancestor that was a different species, although any such separation is artificial and immediately renders the ancestral species paraphyletic. Thus it is impossible to create a complete taxonomy including ancestors without using paraphyletic taxa. They also argue that paraphyletic taxa provide information about significant changes in organisms' morphology, ecology, or life history; in short, that taxa and clades are both useful but separate notions. Many use the term monophyly in its older sense, where it includes paraphyly, and use the alternate term holophyletic to describe clades.

See also

External links

  • The Willi Hennig Society
  • Journey into Phylogenetic Systematics
  • Tree of Life Web Project
  • extensive bibliography for parsimony in Biology and the Philosophy of Biology
  • Example of cladistics used in textual criticism
  • The Compleat Cladist (pdf)

Last updated: 02-08-2005 08:43:16
Last updated: 03-15-2005 09:25:26