Online Encyclopedia Search Tool

Your Online Encyclopedia

 

Online Encylopedia and Dictionary Research Site

Online Encyclopedia Free Search Online Encyclopedia Search    Online Encyclopedia Browse    welcome to our free dictionary for your research of every kind

Online Encyclopedia



Biological warfare

Weapons of
mass destruction
By Type
Biological weapons
Chemical weapons
Nuclear weapons
Radiological weapons
By Country
Canada
China
France
India
Iran
Iraq
Israel
North Korea
Pakistan
Russia
Taiwan
United Kingdom
United States
Nuclear weapon topics
Nuclear countries
Nuclear proliferation
Nuclear strategy
Nuclear terrorism
Nuclear warfare
Nuclear weapon history
Nuclear weapon design
Nuclear explosion
Nuclear test
See also
Dirty bomb
Radiological warfare


Biological warfare, also known as germ warfare, is the use of any organism (bacteria, virus or other disease-causing organism) or toxin found in nature, as a weapon of war. It is meant to incapacitate or kill an adversary.

Biological warfare is a cause for concern because a successful attack could conceivably result in thousands, possibly even millions, of deaths and could cause severe disruptions to societies and economies. However the consensus among military analysts is that except in the context of bioterrorism, biological warfare is militarily of little use.

The main problem is that a biological warfare attack would take days to implement and therefore unlike a nuclear or chemical attack would not immediately stop an advancing army. As a strategic weapon, biological warfare is again militarily problematic, because it is difficult to prevent the attack from spreading to either allies or to the attacker and a biological warfare attack invites immediate massive retaliation.

Contents

History

The use of biological agents is not new, but before the 20th century, biological warfare took three main forms:

  • deliberate poisoning of food and water with infectious material,
  • use of microorganisms or toxins in a weapon system
  • use of biologically inoculated fabrics
  • native peoples in Aptos gave to Spaniards gifts of freshly cut flowers wrapped in leaves of poison oak

Biological warfare has been practised repeatedly throughout history. In 184 BC, Carthaginian leader Hannibal had clay pots filled with poisonous snakes and instructed his soldiers to throw the pots onto the decks of Pergamene ships.

During the Middle Ages victims of the Black Death were used for biological attacks, often by flinging their corpses and excrement over castle walls using catapults. The last known incident of using plague corpses for biological warfare occurred in 1710, when Russian forces attacked the Swedes by flinging plague-infected corpses over the city walls of Reval.

Several colonists settling in North and South America are now famous for waging biological warfare by distributing items infected with smallpox to indigenous populations. Francisco Pizarro distributed clothing infected with smallpox to South American peoples in the 16th century, Hernán Cortés infected the Aztec population in the early 16th century, Jeffrey Amherst distributed smallpox infected blankets to Native Americans sympathetic to France during the French and Indian War, and Captain Ecuyer of the Royal Americans distributed blankets and handkerchiefs to Native Americans in 1763.

During the United States Civil War, General Sherman reported that Confederate forces shot farm animals in ponds upon which the Union depended for drinking water.

Use of such weapons was banned in international law by the Geneva Protocol of 1925. The 1972 Biological and Toxin Weapons Convention extended the ban to almost all production, storage and transport. It is, however, believed that since the signing of the convention the number of countries capable of producing such weapons has increased.

During the Sino-Japanese War (1937-1945) and World War II, Unit 731 of the Imperial Japanese Army conducted human experimentation on thousands, mostly Chinese. In military campaigns, the Japanese army used biological weapons on Chinese soldiers and civilians.

Research carried out in the United Kingdom during World War II left a Scottish Island contaminated with anthrax for the next 48 years.


Considerable research on the topic was performed by the United States, the Soviet Union (see Biopreparat), and probably other major nations throughout the Cold War era, though it is generally believed that such weapons were never used. In 1972, the U.S. signed the Biological and Toxic Weapons Convention, which banned "development, production, stockpiling, and use of microbes or their poisonous products except in amounts necessary for protective and peaceful research."

In 1986, the U.S. government spent $42 million on research for infectious diseases and toxins, ten times more money than was spent in 1981. The money went to 24 U.S. universities in hopes of developing strains on anthrax, Rift Valley fever, Japanese encephalitis , tularemia, shigella, botulin, and Q fever. When the Biology Department at MIT voted to refuse Pentagon funds for biotech research, the Reagan administration forced it to reverse its decision by threatening to cut off other funds.

There have been reports that United States Army has been developing weapons-grade anthrax spores at a biological and chemical weapons facility in Utah at least since 1992. However, the United States had and maintains a stated policy of never using biological weapons under any circumstances.

Biological weapons characteristics

Ideal characteristics of biological weapons are low visibility, high potency, accessibility, and easy delivery.

Diseases most likely to be considered for use as biological weapons are contenders because of their lethality (if delivered efficiently), and robustness (making aerosol delivery feasible).

The biological agents used in biological weapons can often be manufactured quickly and easily. The primary difficulty is not the production of the biological agent but delivery in an infective form to a vulnerable target.

For example, anthrax is considered an excellent agent. We use it here because it is historically important and enough information is public that this discussion can't be a manual. First, it forms hardy spores, perfect for dispersal aerosols. Second, pneumonic (lung) infections of anthrax usually do not cause secondary infections in other people. Thus, the effect of the agent is usually confined to the target. A pneumonic anthrax infection starts with ordinary "cold" symptoms and quickly becomes lethal. Finally, friendly personnel can be protected with suitable antibiotics or vaccines.

A mass attack using anthrax would require the creation of aerosol particles of 1.5 to 5 micrometres. Too large and the aerosol would be filtered out by the respiratory system. Too small and the aerosol would be inhaled and exhaled. Also, at this size, nonconductive powders tend to clump and cling because of electrostatic charges. This hinders dispersion. So, the material must be treated with silica to insulate and discharge the charges. The aerosol must be delivered so that rain and sun does not rot it, and yet the human lung can be infected. There are other technological difficulties as well.

Diseases considered for weaponization, or known to be weaponized include anthrax, ebola, pneumonic plague, cholera, tularemia, brucellosis, Q fever, Machupo , VEE , SEB and smallpox. Naturally-occurring toxins that might be used in weapons include ricin, botulism toxin, and mycotoxins.

Protection measures

The primary civil defense against biological weaponry is to wash one's hands whenever one moves to a different building or set of people, and avoid touching door knobs, walls, the ground and one's mouth and nose. Washing literally sends the germs down the drain.

More exotic methods include decontamination, usually done with household chlorine bleach (5% solution of sodium hypochlorite). One useful decontamination is to leave shoes in an entranceway and make people wade and handwash in a footbath of bleach. Another useful technique is to periodically decontaminate floors and door knobs.

Medical methods of civil defense include stockpiles of antibiotics and vaccines, and training for quick, accurate diagnoses and treatment. Many weaponized diseases are unfamiliar to general practitioners.

Positive pressure shelters are possible but not cost-effective except for the most important installations. This is because in most attacks, the agent will disperse in a long narrow ellipse downwind from the release point. Persons outside the ellipse will not be affected except by secondary infection. Persons within the release ellipse cannot be helped by civil defense measures. They need medical diagnosis and treatment.

Examples of biological warfare

1984 Rajneeshee Salmonella Attack

In a small town of The Dalles in Oregon, followers of the Bhagwan Shri Rajneesh (the Rajneeshee Cult) attempted to control a local election by infecting salad bars with Salmonella. The attack caused about 900 people to get sick. It is considered the first ever bioterrorism case in the US history.

2001 anthrax attack

In September and October of 2001, several cases of anthrax broke out in the United States in the 2001 anthrax attacks, caused deliberately. This was a well-publicized act of bioterrorism. It motivated efforts to define biodefense and biosecurity, where more limited definitions of biosafety had focused on unintentional or accidental impacts of agricultural and medical technologies).


See also

External links


Last updated: 11-06-2004 16:56:30